Simulation and Reconstruction for a multi-kton LArTPC in the context of the LBL study

OUTLINE

- GOAL & FEW GENERAL CONSIDERATIONS
- WHERE WE HAVE STARTED
- OUR APPROACH
- WHERE WE ARE NOW
- WHERE WE EXPECT TO BE IN OCTOBER

PEOPLE

- Work presented here done by the Yale group: Colin Anderson, Steven Linden, Bonnie Fleming & myself
- Not happening in a vacuum a lot of useful interaction with European (ICARUS collaboration) and American (LArTPC group) colleagues

GOAL

Provide a solid understanding of efficiency and background for nue appearance (and numu disappearance) searches with a multi-kton LArTPC, through MonteCarlo studies

WHERE WE HAVE STARTED

- We had available a GEANT3-based MC simulation of a LArTPC which could take NUANCE files as an input (thanks to Bill Metcalf of LSU)
- We had available NUANCE v3 modified for Ar (nuclear effects)
- All this had already been used for FINESSE related studies
- No reconstruction, MC truth only
- Also, work described in NuSAG report (Tufts U.) and work done by ICARUS / Andre' Rubbia in particular

OUR APPROACH

- Expand the existing G3 MC in order to have a viable tool to simulate events in a multi-kton LArTPC
- Use MC truth studies (and existing experimental data, known physics etc.) to estimate signal efficiency and background rejection
- Minimize the use of visual scanning
- Work on automatic reconstruction tools. Given that a lot of work needs to be done from scratch, it is unlikely that a full analysis will be ready by the end of the summer

WHERE WE ARE NOW: G3 MC

Input for the G3 MC:

- a) NUANCE files generated for different nu-fluxes: so far Ash River / NuMI surface building / etc. (thanks to Mark Messier) / WideBandBeam (thanks to Mary Bishai); jobs finished VERY recently, some fluxes still need to be checked etc.
- b) Cosmíc rays
- c) Custom

WHERE WE ARE NOW: G3 MC [from Bonnie]

800km off-axis, 40mrad (32 km)

WHERE WE ARE NOW: G3 MC [from Bonnie]

location	numu CC all	numu CC QE	nue CC all	nue CC QE	NC piO
800km 32km0A	1.27	0.6	0.08	0.02	0.11
WBB	6.12	1.39	0.05	0.01	0.41

Event rates for 1E20, 1kton

WHERE WE ARE NOW: EXISITNG EXPERIMENTAL DATA

Data from 50 LArTPC on WANF nu-beam (1997) (see my NuIntO5 contribution / final paper in preparation)

Results available from various ICARUS publications

- Protons measured down to 50 MeV kinetic E
- Based on proton ID, can select a very pure small (1%) samples of CC QE events
- Help constraining QE kinematics
- gammas & electrons down to 10 MeV
- few cm "gaps" identified unambiguously

Figure 2. From top to bottom: distribution of the muon energy (3 events are out of range), muon transverse momentum and $\mu - \nu$ angle for the golden sub-sample. The continuous red (green) line is the expectation from FLUKA (Saxon-Woods) convoluted with the detector response.

Figure 3. From top to bottom: proton kinetic energy, acollinearity and missing transverse momentum for the golden sub-sample. The continuous red (green) line is the expectation from FLUKA (Saxon-Woods) convoluted with the detector response.

WHERE WE ARE NOW: G3 MC

- Geometry: 10x10x7 m³ i.e. about 1 kton of LAr
- MC provides both MC truth and digitized events for reconstruction studies
- MC has been expanded to follow gammas from piO decay (MC truth)
- There're technical issues in digitizing the equivalent of a 50 kton LArTPC

WHERE WE ARE NOW: EFFICIENCY & BACKGROUND REJECTION [with Steven L.]

Wide band beam - 40 GeV

WHERE WE ARE NOW: EFFICIENCY & BACKGROUND REJECTION

Separation [cm]

WHERE WE ARE NOW: EFFICIENCY & BACKGROUND REJECTION

- Ask for a proton w/ kinetic energy > 50
 MeV to tag the vertex in a CC QE nu
 interaction
- Efficiency > 90%
- Background (NC pi0) rejection:
 - 1. About 50% NCpiO events have a proton in the final state w/kinetic energy > 50 MeV
 - 2. Asking for a gap (separation between vertex & gamma conversion point) > 2cm leaves 1% of NC piO events

WHERE WE ARE NOW: AUTOMATIC RECONSTRUCTION [from Colin A.]

AUTOMATIC RECONSTRUCTION

Applied to a large sample
of CC QE for reconstruction
of the muon direction.

As 1st pass filter, already
good enough, i.e.find vertex &
rough direction for muon
(RMS ~2°)
Works already well for
HE (>1.5 GeV) muons

TBD: AUTOMATIC RECONSTRUCTION

- · Refine reconstruction for numu CCQE
- in particular, reconstruction for low energy protons
- Start working on reconstruction of electrons, gamma and piO (fuzzy events)
- · Start working on measuring "gaps"

CONCLUSIONS/OUTLOOK

- Given the rate of progress so far: by mid-July we expect to make this study systematic for different nu-fluxes (including "leakage" from the HE peak off-axis)
- By October: more aggressive with efficiency (include non-QE channels) and background rejection (constraints from kinematics etc.)
- By October: first results from automatic reconstruction